Science, Technology, and Warfare through the Ages

By constructing complex pieces of electronic equipment that had to be small, rugged, and reliable, radar engineering also set the foundations for modern electronics, especially television. Radar signals could also be used for navigation, as a ship or airplane could measure its distance from several radar bacons to “triangulate” its position. A system for radar navigation, called LORAN (long-range navigation) was the precursor to today’s satellite-based GPS technology.

The military found other uses for radar. Meteorologists, for example, could track storms with this new technology—a crucial skill to have when planning major military operations like D-Day. When weapons designers discovered a way to place tiny radar sets onto artillery shells, the proximity fuse was invented. These new fuses would explode when they neared their targets. By the end of the war, proximity fuses had became a critical component in many anti-aircraft shells.


World War II also saw advances in medical technology. Penicillin was not invented during the war, but it was first mass produced during the war, the key to making it available to millions of people (during World War II it was mostly used to treat the venereal diseases gonorrhea and syphilis, which had been the scourge of armies for thousands of years).

    A soldier is doused
    with DDT during WWII
While penicillin itself is still used today, it was also the precursor to the antibiotics that we take today to keep simple infections from becoming life-threatening illnesses. Medicines against tropical diseases like malaria also became critical for the United States to fight in tropical climates like the South Pacific. Pesticides like DDT played a critical role in killing mosquitoes (although the environmental impacts of DDT would last a long time; a famous book about DDT, Rachel Carson’s Silent Spring (1962), would help found the modern environmental movement). The science and technology of blood transfusions were also perfected during World War II, as was aviation medicine, which allowed people (including us) to fly safely at high altitudes for long periods. Studies of night vision, supplemental oxygen, even crash helmets and safety belts emerged from aviation medicine.